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Radiation Modes and Step Discontinuities in
Dielectric Rib Waveguide

Tullio Rozzi, Fellow, IEEE, Leonardo Zappelli, and M. N. Husain

Abstract—Dielectric rib waveguides are common transmis-
sion lines in integrated optics, with interesting possibilities for
millimetrics. Guided modes of uniform lines have been exten-
sively investigated. In actual circuits, discontinuities or bends
produce radiation from the waveguide, that can not be ex-
plained by means of the guided modes alone and inclusion of
the continuous spectrum is essential in understanding the phys-
ical effects that arise there. In this work, we introduce the con-
tinuum of the rib waveguide, a part of the spectrum that was
not reported up to date. The theory is applied to the abrupt
step discontinuity in the E-plane of the rib guide under LSE
polarization and to the abrupt termination problem, including
radiative effects never investigated before.

INTRODUCTION

HE STATE of the art in millimetric and integrated

optical technology is such that fairly sophisticated
circuits containing a number of components to perform
complex functions are now realizable.

Rib waveguide is, possibly, the most widely used trans-
mission medium in this connection, which has motivated
a considerable modelling effort to characterize its guided
modes (see [1]-[3], to mention just a few).

Realistic components, however, imply the presence of
discontinuities, whose effect is not only to alter the prop-
agation characteristics of the fundamental mode, but
moreover to excite radiative and reactive unbound fields
in the substrate and air regions.

Radiative fields can travel a long way in both regions
and cause interaction with other components sharing the
same substrate or cladding, particularly, in multilevel,
multiple guide configurations.

It is therefore important at this time to ascertain what
these fields are in rib guide.

The complete spectrum of multilayer slab waveguides
is now well known. It consists of a few bound modes, if
any, and a continuum of radiative and reactive air and
substrate modes. The latter are real fields, finite at infin-
ity, that under appropriate orthonormalization constitute,
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together with the bound modes, a complete description of
any physical field around the guide, for instance, in pres-
ence of discontinuities, in a manner conceptually analo-
gous to a modal expansion in a close guide:

This kind of information is, to date, not available for
rib guide. Previous works on the step discontinuity either
consider just the fundamental mode, which is fair enough
in absence of serious radiative effects, or approach the
problem by means of sophisticated numerical methods,
such as Finite Elements [4]. Finite Elements, Beam Prop-
agation Method or Method of Lines are used to investi-
gate other kinds of discontinuities such as bends or
Y-junction. For example, in [5] the curvature was exam-
inated by means of the EDC transformation of the rib
waveguide in a slab waveguide, and then applying the
concept of the ‘‘local modes’’ to the study of the bend,
taking into account the complete spectrum of the slab
waveguide. In [6] and [7] the Method of Lines is used to
characterize the curvature. In [8] the discontinuity of the
Y-junction, made of rib waveguide, is also investigated
by means of a new Explicit Finite Difference Beam Prop-
agation Method (EFD-BPM).

Thus, while useful results are produced by numerical
methods for isolated discontinuities, the presence of mul-
tiple discontinuities causes occupation of memory and
computer time to grow with the cube of the dimensions
of the structure.

Moreover, with a view to interpreting results and de-
riving simplified models, it is important to avail analytical
tools that can be applied to this class of problems.

The analytical development is complicated by the non-
separable nature of the rib guide cross-section, involving
diffraction transverse to x (see Fig. 1). Considerable
progress, however, has been made since the first approach
originally presented in [9] that treats in terms of ‘partial
waves’ the germane problem of the continuum of image
line. This new insight specialized to the case of the rib
guide will be the object of the first half of this paper.

It introduces the concept of ‘wave packets’ that are in-
dividual solutions of the transverse diffraction problem
satisfying boundary, edge and radiation conditions. Each
packet is, in general, labelled by two indices, namely, the
continuous transverse wavenumber %,, and a discrete one,
v, identifying possible degenerate solutions pertaining to
the same value of k,. Each packet is fully characterized
by a single ‘phase shift’ «,(k,), that is found by solving
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Fig. 1. The cross-section of the infinite rib waveguide.

an eigenvalue equation arising from field continuity at the
discontinuous interface of the transverse step.

‘Wave packets’ (continuous modes) are amenable to or-
thonormalization and, together with the bound modes,
constitute a complete spectrum of modes for the rib guide.

It is remarked that the full hybrid nature of the field in
rib guide is not yet dealt with in the present contribution.
This plays a significant role close to modal cutoff of the
fundamental mode [10]-[13] and in those situations where
the discontinuity may cause considerable cross-polariza-

~tion [12]. Where the rib aspect ratio (t/2a) is sufficiently
low, typically <0.4, the minor hybrid content of the field
does not seem to warrant the additional complication in-
volved. In the following, LSE polarization is assumed,
but this assumption is removable if required.

In the second half of the paper, knowledge of the com-
plete spectrum is applied to the practically important
problem of two-dimensional steps in the guide.

Both here and in determining the spectrum, use is made
of the concept of ‘transition function’, previously intro-
duced in [3] in order to generate accurate first order vari-
ational solutions for the bound modes that considerably
reduce the computational load.

Numerical results are presented for the reflection coef-
ficient of a step in rib width and for three different abrupt
terminations, that is, the abrupt termination of the rib, of
the rib and guiding layer and of the whole guide. In the
last case, the forward and backscattered radiated field is
also evaluated.

THEORY
Continuous Spectrum of the Infinite Rib Guide

As two indices are needed in order to represent the
complete spectrum of a close bidimensional waveguide,
two indices are also needed in this open problem.

Moreover, the complete spectrum must reproduce the
whole range of the 3-value on the complex plane: the real
values correspond to radiating waves, the imaginary val-
ues to reactive effects. We use a continuous variable that
labels the continuous spectrum, namely k,, k, = (k§j —
62)1/2, with 0 < k, < oo, (air continuous modes) or g, =
(k3e, — BH'?, with 0 < 0, < v = kyve, — 1 (substrate
continuous modes). The whole continuous spectrum is
therefore constituted by a propagating part (k, < k, cor-
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responding to 0 < B(k;) < ky and 0 < g, < v corre-

sponding to &k, < B(0,) = kox/e—z ), and a non-propagating
one (k, > ky corresponding to Im {B(k,)} > 0).

To a given k,-value (or o,-value) may further corre-
spond more than one field distribution, each satisfying the
boundary conditions, that will be labelled by the discrete
index ». Hence, the unbound part of a typical field com-
ponent, say H,, can be written in terms of this spectrum
as

H,y(x, ) = SO 2 Ak Hyx, y, k) dk,

v
+ SO _ 2. Ble) Hylx, y, 0) do. (1)
Each component of the continuous (‘wave packet’) is
therefore completely labeled by two indices, the contin-
uous index k, (or g,) and the discrete index p.

Transverse Step Discontinuity at x = 0

Finding the continuous spectrum of the rib waveguide,
shown in Fig. 1, starts from the knowledge of the com-
plete spectra of the two slabs constituting the structure.
They include the surface waves, ¢, (y) for x < 0, ¥, ()
for x > 0, and the continua of the air regions ¢.(p, ¥),
¢'O(p’ }’), "pe(p» }’), l\[/o(p9 y)s e = ¢oven, 0 = Odd and of
the substrate regions ¢, (g, y), ¥ (o, ¥).

Considering transverse propagation in the x-direction,
the presence of the discontinuity at x = 0 produces scat-
tering among the slab modes. As in a discontinuity prob-
lem, a combination of these modes is required in order to
satisfy all boundary and edge conditions imposed by the
rib corner. Starting from these physical considerations,
we suppose that there is only one surface wave in both
slabs and electric wall symmetry at the rib plane of sym-
metry x = —a; we fix a given value of &, and of the dis-
crete index ». We then choose a y-directed potential that
is constituted by the superposition of slab modes of the
following form (suppressing the factor e /b7y

P, cos [g, (k) (x + a)]
e "0 os g (k) al

OiGx, y, k) =

_cos [g(p, k) (x + a)]
cos g (p, k;)al

° 8,0
+ ——
SO k(z)ez — 52 b (0, y)

Ccos [p(o, k) + a)]
cos [p(o, k;)d]

do

—a<x=<20

(2a)
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cos [k, (k) x + a, (k)]

¥ ()

Hh , k -y
S(x, y, k) KZe.. cos a,(k,)

+ ; S kQ2vm_(P)2 U (p
_cos [q(p, k)x + a,(k)]
COS o (k)
* m:zze,g S,\, kQZWi_(p)Z ¢m(p y)
gy | O
0 koez -

_cos [p(a, k)x + a,(k)] da} Y= 0
cos a,(k,)
(2b)

where e, o denotes parity of the continua of the slabs and,
moreover:

kok) = vk} + kileer — 1)

g, (k) = Vi + k(e — 1)
po, k) =Nk} — o> + ¢*
v(p, k) = W v = ke — 1

P, P/, Qm, Q). S, , S, are as yet unknown ampli-
tudes and ¢, _, €, the effectlve dielectric constants of the
slabs for x < 0, x > O respectively.

The form of (2a), (2b) requires some comment.

The x-dependence in (2a) arises from the even plane of
symmetry at x = a, that in (2b) implics a standing wave
in the external region. The latter can be seen as the com-
bination of a wave e’*** generated by a source at x = + oo
and travelling towards the discontinuity and a reflected
wave ¢/ ®&xT20k) The phase shift «,(k,) is of special
significance.

It is noted that it is taken as a function of just &, =
Vi + k2 and not of k,, k, separately.

This is an essential requirement in order that fields
transverse to x derived from the same potential (2a), (2b)
and travelling with the same phase velocity in the
z-direction be continuous at the transverse step disconti-
nuity, that is, they form a ‘wave packet’ individually sat-
isfying the boundary conditions. In fact, taking into ac-
count that the fields in the LSE case are given by

E,(x, y, k) = opBlk,) i x, y, k)
Eyy(xa y’ kt) = 0

q(p, k) = vk = p?

E,x, y, k) = —jopd, 1L5x, y, k)
H.,(x, y, k) = 03110(x, v, k)

Hy(x, y, k) = (koe, + 82) TLix, y, k)
H,(x,y, k) = —jBk.) 8,T5(x, y, k,)

we apply the continuity of the H,,(x, y, k,) component at
the interface x = 0. Denoting the interface field H,,(0. v,
k) = h,(y, k), we recover, from or’[hogonality“ of the
slab mode functions, the following expressions for the
amplitude coeflicients P, Q, § at either side of x = O:

P, = S by (3, k) &(y) dy = (hy (3, k), (3
P; = (hy(y, k), ¥ (0))
Ql/_m(p) = <h‘yv(y9 kt)~ d)m(pa ,V)>
Qo (0) = (3, &), Y05 ¥))
S,}_(G) = <h'yu(y7 kt)7 ¢5b(07 }’)>

§, ) = (hy(y, k), ¥ (0, ¥)

The analytical expressions of these coeflicients are re-
ported in [3].

As these coeflicients are now expressed in terms of &,
we apply the continuity of E,,(x, y, k,) at x = 0. From
this equation, we obtain an eigenvalue equation for the as
yet undetermined phase shift «,(k,), that is, the last un-
known quantity in the expression (2a), (2b) for the poten-
tial. This is:

tgay(k,){ !

kO €e+

¥y () ke (k)

Sk’ Qm(m »

+ 2 g

m=e.0

(0, ¥) q(p, k) dp

v S:_(
| 2 pe k) do
0 kge, — @

N _mzéa Sk ](Q(z)vm(p)le/ (0. ) v(p, k) dp

s (¥) g5 (k) tglg; (k) al

kOEe—

+ 2 S Ll 4 (o, ) alp, k)
m=e,o 0 kO_

I

S, (9)

3 3
0 kotr — ©

- 1glg (o, k)al do + S

© (0. ) plo, k) tglp(o, k)a] do. 3)

On inspection and bearing in mind the definition of P, 0,
S, (3) can be written more compactly as the following
operator eigenvalue equation:

tga, (k) Re {Z(k,)}
= Im {Z(kt)}

< hy(3, k)
(v, k) @)

where Z(k,) = Re {Z(k,)} — j Im {Z(k,)} is the trans-
verse impedance integral operator acting on the field 4,,(y,
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k,) whose kernel Z(y, y', k,) is defined below:
Re {Z(y, y', k)}

_ {*( S®) 4 ) 90

kO €eot
+ mg,o S ng’ IZ ¢m(p y) \//m(p y )dp
* So %B.(_.—i Yo (0, Y) Vg (0, y )dO}

Im {Z(y. y'. kn)}

=€,

= wu{— Z S Zz(p, 3 1//m(0- }’) \[/m(o- y )dp
m o Jk 0

qs (k)
ko e_

+ZSO

m=e,0

&5 () &, (y") 181g, (k) a]

Zz(”; 92 K)o (0, 3) bulor 3)
0

p(o, k)

- 1glq(p, ky)al do + S kz 2, — o2 b5 (0, ¥)

* oy (0, y") tglp(o, k)al do}.

We may cast (4) in a variational form, by multiplying by
hy(y, k), integrating in y and obtaining:

<hyy()’> kt)’ Im {Z(kt)}9 hyy(y’a kt)>

Chy (3, k), Re {Z k)Y, hy(y's k)Y
The above problem is amenable to a standard Ritz-Gal-
erkin approach. Thus, we choose an appropriate ortho-

normal basis { f;(3)} in order to expand h,,(y, k,):
N

ho(y. k) = 2 Hi, fi(3). 5)

tgav(kt) =

Substituting (5) in (4) turns the latter integral equation
into the following standard matrix eigenvalue problem:

tgo, (k) Re {Z (k) yw n[H Iy
=TIm {Z(k)} nxnH,vs 1 ©)

where Z(k;) = Re {Z(k,)} — jIm {Z(k,)} is the trans-
verse impedance matrix of the rib guide, defined ele-
mentwise by

k. (k)

kO €e+

+ HZ_ZEO S ZZ(p—

Re {Z(k )}l/\ -

prp}

2 le(p) ka(p) dp

" plo, k)

+S S()Sk(o)do
0k0€2—

Im {26} = = 2 Sk 1K) 05 0) Qi) d

2 ’)
n=e,0 ) ko -

+ k(’)P “P 1g1q (k) al
0 e—

+ %

m=e,0

, k,
SO 90 k) - () 05 ()

2 2
kg —

* plo, k)
tglq(p, k)al do + So ke, — o

S8, (0) S (o) 181p(a, k)a] do.

tgo,(k, ) is the eigenvalue of (6), H, is the eigenvector and
Re {Z(k,)} is a weight matrix. The eigenvector is just the
v-th component of the interface field 4,,(y, &) in the basis
(5). For this kind of problem, the following orthogonality
relationship on the interface x = 0 holds (T denotes trans-
position):

HI - Re {Z(k)} - H, =5, (7)

The physical interpretation of (7) is that two field distri-
butions pertaining to the same k,, but corresponding to
different indices p, v, are also orthogonal in y over the
interface at x = 0, i.e. they do not exchange power at this
discontinuous interface.

In order to actually set up and solve (6) while keeping
the matrix size as low as possibe, we must effect a prudent
choice of the expansion basis for the field at the interface,
that includes all known physical features of the solution.
In fact, we use a single function, the ‘transition function’
[11, [2], a choice that makes this problem scalar. The
‘transition function’ consists of the distribution of the
component h,, of the guided mode of a slab of interme-
diate height, that maximizes the coupling integrals be-
tween the slabs to the left and to the right of the transverse
discontinuity and the intermediate slab itself. With this
choice N = 1 in (5), and either (4) or (6) becomes the
scalar equation below:

) S L0105 (o do

m=e,0 Jk k%

+ &) (g, (k) al

ke,
mq(p,k:)
.3 [aen)
o ki —p’

m=e,0

10, (012glq(p, k)al dp

rgouk,) = {_

v . kt B
| 2O P, k) da}

0 k06'7 -
YA jk' q(p. k)
{ko €o+ [ ] * m=23»,0 0 k% - p2
v -1
+ > kt + 2
[Qm (0 dp + SO %_—3 s (U)J“da} .

8
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Although (8) is now a scalar expression, its pointwise nu-
merical evaluation is time-consuming in practice and a
simpler expression would be desirable. One such is ob-
tained by observing in (8) that the behavior of rgo (k,) is
dominated by its poles, arising from the factor tg[g; (k,) a]
in the second term. Considering the asymptotic behaviour
around these poles, one recovers a simple approximate
expression, valid for not too large a rib height 7, namely,

p-
1gak) = <F>

In order to assess the validity of this approximation, we
compute tga(k,) for two significant cases of rib wave-
guide with ny = 3.44, n, = 335, A = 1.15 um, D = 1
pm, a = 1.5 um, d = 0.5 pm and 0.9 pm, respectively.

Outer slab thicknesses d = 0.5 um and 0.9 um repre-
sent the situations of slabs guides near and beyond cutoff
respectively. The results for tga(k,) versus k,/ky pre-
dicted from equations (8) (continuous line) and (9) (dashed
line) are plotted in Fig. 2 and Fig. 3 ford = 0.5 pm and
d = 0.9 um respectively. From these figures, we notice
that the difference between the two curves is very small,
even for large steps, as long as the outer slab supports
surface modes. Moreover, in the case of Fig. 3, the two
curves can be considered coincident. However, where the
outer slab is below cutoff, approximation (9) does not hold
and (8) must be used instead, taking care of suppressing
the term P* that corresponds to a guided mode of the
outer slab, now nonpropagating.

Once the eigenvalue «(k;) is recovered, all field com-
ponents of the continuous modes are obtainable from the
expression (2a), (2b) of the hertzian potentials.

Finally, in Appendix I is shown that for the continuum
the following orthonormality condition holds:

ee+ q.\‘ (k )

- e t)al.

®

SS E (x,y, k) x H,(x, y, k) * z ds
S

= b, 6k, — k7). (10)

(10) implies in (2a), (2b) the following normalization coef-

ficient:
2k,
f ———— cos a,(k,).
Wwﬂﬂ(kt) '

Extension to the odd case (magnetic wall in x
obvious.

Analogous developments are applied to the substrate
continuous modes in terms of the independent continuous
variable 6,. The complete expression of this kind of modes
are reported in Appendix II. Using again the ‘transition
function’, we can obtain a simplified expression of the
tgd(0,), valid for not too large ribs:

tgé(o_t) — <%>_ e+ k (at)

—a) is

1glk (o,)al.

11
6\ 0,(0,) b
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Fig. 2. Values of tga(k,) versus k, /k, predicted form (8) (continuous line)
and (9) (dashed line) for the following parameters: n; = 3.44, n, = 3.35,

A=1.15pum, D =1pum,a=1.5pmandd = 0.5 um.
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Fig. 3. Values of rga(k,) versus k, / k, predicted form (8) (continuous line)
and (9) (dashed line) for the following parameters: n, = 3.44, n, = 3.35,
=1.15um, D =1pm,a=15pmandd = 0.9 pm.
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18(8(0)]
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=
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0 0.2 0.4 0.6 0.8 1
O'l/v
Fig. 4. Values of 1go(a,) versus o, /v predicted from (11) (continuous line)
and (A2.3) (dashed line) for the following parameters: n; = 3.44, n, =
335, A=1.15um,D=1pm,a = 1.5 ymand d = 0.5 um.

As in the previous case, we can compare the behaviour
of 1g8(s,) obtained by (11) with the complete expression
reported in Appendix II (A2.3). We have considered the
same cases of the rga(k,), i.e.: ny = 3.44, n, = 3.35, A
=1.15um, D =1 um, a = 1.5 um, d = 0.5 pm and
0.9 pum. We notice that the complete expression (A2.3) is
well approximated by (11), as shown in Figs. 4 and 5,
where the two curves are practically coincident.

Moreover, we notice that zgd(o,) evaluated at g, = v is
exactly equal to the value of rga (k) at k, = 0. Thus, we
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Fig. 5. Values of 1gé(0,) versus ¢,/ v predicted from (11) (continuous line)
and (A2.3) (dashed line) for the following parameters: n, = 3.44, n, =
335, A=1.15um, D = 1l ym,a = 1.5 umand d = 0.9 um,

can assert that the substrate continuous modes are the
‘continuation’ of the air continuous modes.

Step Discontinuities in Rib Guide

Knowledge of the continuous spectrum is now applied
to various examples of step discontinuities.

Step discontinuities were examined in the literature [4]
but the presence of a rib guide continuum was never in-
troduced. The continuum, in fact, plays the same role as
that of higher order modes in close guide, that are excited
by a step discontinuity.

E-Plane Step

The first case under consideration is the discontinuity
in the E-plane of a LSE-polarized rib guide due to a
change of rib width occurring at z = 0, as shown in Fig.
6.

By standard techniques [13], we recover the integralv

equation for the discontinuity in terms of the transverse

o
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Fig. 6. Change in rib width between two rib waveguides.

with
A" = (Hy, ex (x, )»

AT = (H,, e (x, »)»

A~ (k) = (H,, e x, y, kt)>>
AT (k) = KH,y, €7 (x, 3, k)N
AA(O't) = «Hy7 ex_ (X, ¥, ot)»

A*(o) = KH,, e (x, 9, 0,)»

where { » stands for the integration over the cross-sec-
tion’ 6’; (xa )’), ex_ (x, y’ kt)5 e; (x’ y’ Gt)a 6;- (X, )’), e;' (X,
y, k), el (x, v, 0,), denote the x-components of the elec-
tric field of the bound modes and of the continua, to the
left and to the right of the discontinuity, respectively, and
the normalizations (10) and (A2.4) hold.

Again, using the “transition function’ as a single term
expansion reduces the above equation (12) to a scalar one:
we take as H, the transverse distribution of the bound
mode of an ideal rib guide of width intermediate between
a, and a,, so as to ensure maximum conservation of power
at the step discontinuity. By multiplying (12) by H, and
integrating in the transverse section, a relatively simple
expression of the reflection coefficient is obtained:

A2 — A7 4+ S [A7%(k,) + AT?(k,)] dk, + S [A7%(0,) + A0 do,
0 0

R =

@«

(13)

A2+ 47 + SO [A7%(k,) + AM2(k,)] dk, + S [A™%(,) + A(0,)] do,
0

magnetic field distribution H, at the step:

1+R
1 —R

Ae (x,y) — SO A~ (k) e, (x, y, k) dk,
+ S A (0,) e, (x, y, 0,) do,
0
— Ay | A k)
0

+ SO A+(0t) e;- (x5 y’ 0[) dat (12)

Now, the above overlapping integrals can be evaluated
analytically. The results obtained for modulus and phase
of the reflection coefficient at the step discontinuity of Fig.
6 are shown in Fig. 7, assuming the following parameter
values: n; = 3.44, n, = 3.40, A = 1.15 um, 2a, =
3um,d = 0.6 pmand D = 1.0 um.

In the same manner, we have examined the abruptly
terminated rib waveguide shown in Fig. 8. In particular,
in Fig. 8(a) just the rib is terminated, in Fig. 8(b) the
guide and the surrounding slab are terminated and, fi-
nally, in Fig. 8(c) the whole guide is terminated. Corre-
spondingly, the region z > 0 is represented by the spec-
trum of an asymmetrical slab waveguide of thickness d
for the case of Fig. 8(a), by the spectrum of an air-sub-
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Fig. 7. Modulus and phase of the reflection coefficient versus w, /w, for
the case of Fig. 6 with the following parameters: ¢, = 3.44, ¢, = 3.40,
A=1.15pm,2a, =3 pm,d = 0.6 gmand D = 1.0 pm.
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Fig. 8. Abruptly terminated rib waveguide: (a) just the rib is terminated;
(b) the rib and supporting slab are terminated; (c) the whole guide is ter-
minated.

strate space for the case of Fig. 8(b) and by the spectrum
of the air space in case of Fig. 8(c). Now, for case of Fig.
8(a) we use as ‘transition function’ the bound mode of a
rib waveguide whose height d is intermediate between
those of the guide ‘D’ and the slab ‘d’ to the left and to
the right of the step respectively. Again d is chosen so as
to ensure maximum conservation of power.

In the case where no guidance is present in region z =
0, i.e. for cases of Fig. 8(b) and 8(c), the above criterion
breaks down. For these cases, we choose as ‘transition
function’ the bound mode of the rib waveguide whose
height is the same as the height of the ‘transition slab’, as
defined in the previous section.

Although this choice is somewhat atbitrary, its use is
justified by the insensivity of the results to slight varia-
tions of the variational trial function. ’

The reflection coefficients for the cases of Fig. § are
shown in Fig. 9. In the case of Fig. 9(a) where only the
rib is terminated at z = 0, the reflection coefficient de-
creases as d increases. This is to be expected, since, as d
increases, the rib waveguide approaches the asymmetrical
slab guide at z = O and most of the incident wave from
the rib guide will transmit through to the asymmetrical
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Fig. 9. Modulus and phase of the reflection coefficients versus outer slab
thickness d for the corresponding cases of Fig. 8.

slab guide for z = 0. As the confinement increases, i.e.,
d decreases, the reflection coefficient of configuration of
Fig. 8(a) approaches that of Fig. 8(b). This is so because,
as d decreases, the slab at z = 0 will not support surface
waves and there is no guiding.

The reflection coefficient of the configuration of Fig.
8(c) where the guide is terminated by the air half space is
slightly higher than those of Fig. 8(b) or Fig. 8(a) with a
slab below cutoff. This suggests that some of incident
wave leaks through the substrate. However, the difference
in the reflection coefficients of the two different termina-
tions is not large.

Finally, the forward and backscattered radiation pat-
terns of the far field for the configuration of Fig. 8(c),
calculated by means of saddle point integration, are shown
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Fig. 10. Forward and backscattered radiation patterns of the far field for
the configuration of Fig. 8(c): (a) ®-plane and (b) ¥-plane for forward
radiation; (c) $-plane and (d) ¥-plane for backward radiation.

in Fig. 10, where the curves with negligible value have
not been reported, for the sake of simplicity.

Fig. 10(a)-(b) show the forward radiation pattern in the
azimuthal and transverse directions (see Fig. 8(c)). We
notice a narrow lobe in ® as well as in ¥, at about & =
0°, ¥ = 0°. Fig. 10(c)-(d) show the backward radiation
pattern. In the ®-plane we notice that the maximum ra-
diation occurs at about ® =~ 160°, ¥ = 20°. Obviously,
this radiation is symmetrical with respect to the plane &
= 7.

In the ¥-plane, the maximum is at about ¥ =~ 25°, &
=~ 160°. Im the latter radiation pattern, the air region is
represented by 0° = ¥ = 90°, the substrate region is
represented by 270° = ¥ =< 360°. Note, however, that
the radiation patterns are normalized to its maximum value
and the backscattered radiation in this problem is about
three order of magnitude less than the forward radiation.
We note the presence of backscattered radiation over a
wide range of angles, not unlike the case of a step dis-
continuity in slab guide [13].

This last result would be particularly difficult to obtain
without a knowledge of the rib guide radiation modes.

CONCLUSION

We have derived the continuous spectrum of the rib
waveguide by a method that ensures orthonormality and
completeness of the spectrum. We obtain a relatively sim-
ple approximation of this continuum for most cases of

common interest. Finally, we used the complete spectrum
of the rib waveguide to examine various cases of step dis-
continuities, including, for the first time, radiative ef-
fects.

AprPENDIX 1

Setting A(p) = kj — p%, A(0) = kle, — o and drop-
ping the k-dependence when not necessary, integral (10)
can be divided into two parts: one for the inner region (/)
and one for the outer region (1,).

We have

i1

Il = Exu(xa }’, kt) Hy,u.(x’ ys kt,) dx dy
2 , kiki 8
= — cos (k) cos (k) tﬁt,
VP P, g,18(g,0) — gitg(g;a)
ke, q: — g
S r Qi Qun 418(98) = q'12(4'a)
m=e0 Jo  A(p) q2 - q’2 P
S” S, S, pe(pa) — p'e(Pp'a) ,
3 3 g
o A(0) p-—p'
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Ifk, < k':
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[
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Taking into account that qsﬂ— qs’zr = éz — q 2 = p? -
p? =k - k!?, and expanding &, as in (5), by the defi-
nition (6) of tga,(k,), the sum of I; and of the second term
of I, gives zero. Thus, by (7), the remaining term yields

Sg Eu(x7 Y, kt) X Hu(x, y, kt,) 4 ds
S
= 8k, — k/YH, Re {Z(k)} H, = 8k, — ki) 5,,.

.

o.(o)) = Voo + kies — €)

AprPENDIX II

The complete expression valid for substrate continuous
modes is

2 .y
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where
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With analogous development to that of the air continuous
modes, introducing the ‘transition function’, we obtain:

AP i (1
tgau(a,) k%&e+ [P7]" + k(2)2 T 2S ()] dc
k()
= 2 1P Pl o))
k > Vi
-3 | 2R 105 (P do
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Moreover, the following orthogonality relationships hold:
SS Ex,y, 0) X H(x,y,0/) - zds
s
= 6 v 6(0t - Gt,)

H E(x,y, k) X H(x,y, 0,) - zds
N

SS Ev(x’ y’ OI) X H,u(x9 y; k[) * ZdS = 0
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(A2.4)

(A2.4) introduces in (A2.1), (A2.2) the following nor-
malization coefficient:

cos 6,(0;). (A2.5)

TwuB(o,)
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