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Radiation Modes and Step Discontinuities in

Dielectric Rib Waveguide
Tullio Rozzi, Fellow, IEEE, Leonardo Zappelli, and M. N. Husain

Abstract—Dielectric rib waveguides am commou transmis-
sion lines in integrated optics, with interesting possibilities for
millimetrics. Guided modes of uniform lines have been exten-
sively investigated. In actnal circuits, diseontinuities or bends

produce radiation from the waveguide, that can not be ex-
plained by means of the guided modes alone and inclusion of

the continuous spectrum is essential in understanding the phys-

ical effects that arise there. In this work, we introduce the con-

tinuum of the rib waveguide, a part of thle spectrum that was
not reported up to date. The theory is applied to the abrupt

step discontinuity in the E-plane of the rib guide under LSE
polarization and to the abrupt termination problem, including
radiative effects never investigated before.

INTRODUCTION

T HE STATE of the art in millimetric and integrated

optical technology is such that fairly sophisticated

circuits containing a number of components to perform

complex functions are now realizable.

Rib waveguide is, possibly, the most widely used trans-

mission medium in this connection, which has motivated

a considerable modelling effort to characterize its guided

modes (see [1]–[3], to mention just a few).

Realistic components, however, imply the presence of

discontinuities, whose effect is not only to alter the prop-

agation characteristics of the fundamental mode, but

moreover to excite radiative and reactive unbound fields

in the substrate and air regions.

Radiative fields can travel a long way in both regions

and cause interaction with other components sharing the

same substrate or cladding, particularly, in multilevel,

multiple guide configurations.

It is therefore important at this time to ascertain what

these fields are in rib guide.

The complete spectrum of multilayer slab waveguides

is now well known, It consists of a few bound modes, if

any, and a continuum of radiative and reactive air and

substrate modes. The latter are real fields, finite at infin-

ity, that under appropriate orthonormalization constitute,
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together with the bound modes, a complete description of

any physical field around the guide, for instance, in pres-

ence of discontinuities, in a manner conceptually analo-

gous to a modal expansion in a close guide:

This kind of information is, to date, not available for

rib guide. Previous works on the step discontinuity either

consider just the fundamental mode, which is fair enough

in absence of serious radiative effects, or approach the

problem by means of sophisticated numerical methods,

such as Finite Elements [4]. Finite Elements, Beam Prop-

agation Method or Method of Lines are used to investi-

gate other kinds of discontinuities such as bends or

Y-junction. For example, in [5] the cutiature was exam-

inated by means of the EDC transformation of the rib

waveguide in a slab waveguide, and then applying the

concept of the “local modes” to the study of the bend,

taking into account the complete spectrum of the slab

waveguide. In [6] and [7] the Method of Lines is used to

characterize the curvature. In [8] the discontinuity of the

Y-junction, made of rib waveguide, is also investigated

by means of a new Explicit Finite Difference Beam Prop-

agation Method (EFD-BPM).

Thus, while useful results are produced by numerical

methods for isolated discontinuities, the presence of mul-

tiple discont inuities causes occupation of memory and

computer time to grow with the cube of the dimensions

of the structure.

Moreover, with a view to interpreting results and de-

riving simplified models, it is important to avail analytical

tools that can be applied to this class of problems.

The analytical development is complicated by the non-

separable nature of the rib guide cross-section, involving

diffraction transverse to x (see Fig. 1). Considerable

progress, however, has been made since the first approach

originally presented in [9] that treats in terms of ‘partial

waves’ the germane problem of the continuum of image

line. This new insight specialized to the case of the rib

guide will be the object of the first half of this paper.

It introduces the concept of ‘wave packets’ that are in-

dividual solutions of the transverse diffraction problem

satisfying boundary, edge and radiation conditions. Each

packet is, in general, labelled by two indices, namely, the

continuous transverse wavenumber kl, and a discrete one,

v, identifying possible degenerate solutions pertaining to
the same value of kf. Each packet is fully characterized

by a single “phase shift’ av(k,), that is found by solving
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Fig. 1. The cross-section of the infinite rib waveguide.

an eigenvalue equation arising from field continuity at the

discontinuous interface of the transverse step.

‘Wave packets’ (continuous modes) are amenable to or-

thonormalization and, together with the bound modes,

constitute a complete spectrum of modes for the rib guide.

It is remarked that the full hybrid nature of the field in

rib guide is not yet dealt with in the present contribution.

This plays a significant role close to modal cutoff of the

fundamental mode [10]-[13] and in those situations where

the discontinuity may cause considerable cross-polariza-

tion [12]. Where the rib aspect ratio (t/2a) is sufficiently

low, typically <0.4, the minor hybrid content of the field

does not seem to warrant the additional complication in-

volved. In the following, LSE polarization is assumed,

but this assumption is removable if required.

In the second half of the paper, knowledge of the com-

plete spectrum is applied to the practically important

problem of two-dimensional steps in the guide.

Both here and in determining the spectrum, use is made

of the concept of ‘transition function’, previously intro-

duced in [3] in order to generate accurate first order vari-

ational solutions for the bound modes that considerably

reduce the computational load.

Numerical results are presented for the reflection coef-

ficient of a step in rib width and for three different abrupt

terminations, that is, the abrupt termination of the rib, of

the rib and guiding layer and of the whole guide. In the

last case, the forward and backscattered radiated field is

also evaluated.

THEORY

Continuous Spectrum of the Injinite Rib Guide

As two indices are needed in order to represent the

complete spectrum of a close bidimensional waveguide,

two indices are also needed in this open problem.

Moreover, the complete spectrum must reproduce the

whole range of the ~-value on the complex plane: the real

values correspond to radiating waves, the imaginary val-

ues to reactive effects. We use a continuous variable that

labels the continuous spectrum, namely k,, k, = (k: –

P2) 1‘2, with O s k, s ~, (air continuous modes) or u, =
(k&2 – /32)1/2, with O < 0, < v = ko~ (substrate

continuous modes). The whole continuous spectrum is

therefore constituted by a propagating part (kt < k. cor-

responding to O < ~(kf ) < k. and O < at < v corre-

sponding to k. < (3(af ) s ko& ), and a non-propagating

one (k, > k. corresponding to Im {(3(kt ) } > O).

To a given k,-value (or at-value) may further corre-

spond more than one field distribution, each satisfying the

boundary conditions, that will be labelled by the discrete

index v. Hence, the unbound part of a typical field com-

ponent, say HY, can be written in terms of this spectrum

as

sm

Hy(x, y) = ~ Au(k,) H,”(x, Y, k,) dk,
o ?= 1,2,...

!

u

+ ~ llv(q) llYv(x, Y, a,) da,. (1)
o V= 1,2,.

Each component of the continuous (’wave packet’) is

therefore completely labeled by two indices, the contin-

uous index kt (or of) and the discrete index v.

Transverse Step Discontinuity at x = O

Finding the continuous spectrum of the rib waveguide,

shown in Fig. 1, starts from the knowledge of the com-

plete spectra of the two slabs constituting the structure.

They include the surface waves, @,( y) for x <0, ~,(y)

for x > 0, and the continua of the air regions ~, (p, y),

00(P, Y), +.(P, Y), +.(P, Y), e = even, o = odd and of
the substrate regions d,~ (a, y), ~,~ (a, y).

Considering transverse propagation in the x-direction,

the presence of the discontinuity at x = O produces scat-

tering among the slab modes. As in a discontinuity prob-

lem, a combination of these modes is required in order to

satisfy all boundary and edge conditions imposed by the

rib corner. Starting from these physical considerations,

we suppose that there is only one surface wave in both

slabs and electric wall symmetry at the rib plane of sym-

metry x = –a; we fix a given value of kr and of the dis-

crete index v. We then choose a y-directed potential that

is constituted by the superposition of slab modes of the

following form (suppressing the factor e ‘jpz )

~:(x, Y> r
k). rk:,:_+s(Y)

COS[q, (kt ) (X + a)]

cos [q. (k, ) a]

+x
!

m Q;(P)
, @m(P> Y)

m=e, o ok; —p

cos [q(p, kt)(x + a)]
dp

COS [~(p, kt)a]

. cos [p (u, kr) (x + a)] do

cos [p (u, kt ) a]

—a<~<() (2a)
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~!(xj Y, k) = 2* +,(Y)
Cos [kx (k, )x + Clv (kt )]

Cos (1”(/%[)

(2b)

where e, o denotes parity of the continua of the slabs and,

moreover:

k. (k,) =

q, (kt ) =

P(U, k,) =

‘Y(P, k) =

Jk? + k&C+ – 1)

~ u = koJe2 – 1

P;, P;, Q;., Q~., S;, S; are as yet unknown ampli-

tudes and e,_, ~,+ the effective dielectric constants of the

slabs for x < 0, x > 0 respectively.

The form of (2a), (2b) requires some comment.

The x-dependence in (2a) arises from the even plane of

symmetry at x = a, that in (2b) implies a standing wave

in the external region. The latter can be seen as the com-

bination of a wave eJk’x generated by a source at x = + co

and traveling towards the discontinuity and a reflected

wave e –j (k..x + Zdh)) The phase shift ~lp(kf ) is Of Special

significance.

It is noted that it is taken as a function of just k, =

m and not of kX, k, separately.

This is an essential requirement in order that fields

transverse to x derived from the same potential (2a), (2b)

and traveling with the same phase velocity in the

z-direction be continuous at the transverse step disconti-

nuity, that is, they form a ‘wave packet’ individually sat-

isfying the boundary conditions. In fact, taking into ac-

count that the fields in the LSE case are given by

~XV(X, y, kt) = q@(kt) ~:(x, y, k,)

EYP(x, y, k,) = O

I?ZV(X, Y, k,) = ‘.jw~X~9(x, Y, kt)

~xv(X, y, k,) = d:y~~(X, y, k,)

~yu(X, y, k,) = (k&, + ~;) ~1%> Y> k,)

~:v(X, y, k,) = –jL3(k,) ~Y~;(x, Y, k)

we apply the continuity of the HYV(X, y, kt ) component at

the interface x = O. Denoting the interface field HYP(O, y,

&) = h,u( y, J$), we recover, from orthogonality of the
slab mode functions, the following expressions for the

amplitude coefficients P, Q, S at either side of x = O:

~

co

p; = hYU(y, k,) +,(y) dy = (&(y, k,), O,,(Y))
–-m

P7 = (fiY.(Y, k,), ~,(Y))

QR(P) = <hY,(Y, k,). 0,. (o, v))

Q:n(P) = (~’Yv(Y> k,), +~(p, Y))

S;(O) = (hYU(y, kt), @$~(u, y))

S:(a) = (~!y,(y, k,), ~$~(a, y))

The analytical expressions of these coefficients are re-

ported in [3].

As these coefficients are now expressed in terms of ?ZYV,

we apply the continuity of I&(x, y, kt ) at x = O. From

this equation, we obtain an eigenvalue equation for the as

yet undetermined phase shift av(kf ), that is, the last un-

known quantity in the expression (2a), (2b) for the poten-

tial. This is:

[
tg~.(k,) j&i, (Y) kx (k~)

“ @sb (o. Y) P (u, k) @[P (o, k) al do. (3)

on inspection and bearing in mind the definition of P, Q,

S, (3) can be written more compactly as the following

operator eigenvalue equation:

tgav(k,) Re {~(kt ) } “ IZYJy, kf )

= Im {Z(kt)} “ hY,(Y, k,) (4)

where ~(kt) = Re {~(kt)} – j Im {Z(kt)} is the trans-

verse impedance integral operator acting on the field h,,u(y,
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kf) whose kernel Z(y, y’, k,) is defined below:

Re {Z(y, y’, k,)}

{
= @w -+.(Y) is(Y’)

!

k,

+Z
q(p> k,)

m=e, o ok~–p
L t,,,(P> Y) ~~(P* Y’) dp

+
s

“ P (o, kt)

1
I +s~ (~, Y) t.b (~, Y’) ~~

O k~e2 – u

Im {Z(y, y’, k,)}

[!
=@p– z

m 7(P> J$)
z +,n (0, y) *m (0, y ‘) dp

m=c. o k,k~–p

+ q,(k)
&_ OS(Y) @,(Y’) fg[q,(i)~]

!
m

+x (z(p> k,)
, An(P, Y) 4%(P, v’)

m=e, o Ok:–p

“ tg[q(p, kt)a] dp +
!

u P(U, k,)

(J k&2 – u
z @sb (u, Y)

1“ hb(~, Y’) ~g[P(a, k)al da .

We may cast (4) in a variational form, by multiplying by

hY,( y, kt ), integrating in y and obtaining:

(Izy.(y, h), Im {~(k) )-, &.( Y’, h))
tgau(kt ) =

(h,v(y, k,), Re {~(kt)}, hyv(y’, k,)) ‘

The above problem is amenable to a standard Ritz-Gal-

erkin approach. Thus, we choose an appropriate ortho-

normal basis { fk(y)) in order to expand h~u(y, k,):

N

hyu(y, k,) = ~~1 Hkufi(y). (5)

Substituting (5) in (4) turns the latter integral equation

into the following standard matrix eigenvalue problem:

tgau(k~ ) Re {Z(k~)}NX N[~.lNx I

= Im {Z(kt)}NXN[lZplNXI (6)

where Z(kr) = Re {Z(kt)} – j Im {Z(kr)} is the trans-

verse impedance matrix of the rib guide, defined ele-

mentwise by

!
k,

+x q(p. k,) +
2 Qim(P) Q;m(P) dp

m= e,o ok~—p

+
!

2’ P (o, k,)
z S:(o) S; (o) do

O k&2 – u

scc

h {z(k, )}iL = – ~
7(P, k,) +

o Qnn(P) Q:r(P) 4
m=e, o k{ k: – p“

+ q,(kt) - -
— P, pk tg[q, (k, )a]
k&-

+x
!

m q(p, k,)

~=~,o ok:–p
z Q,i(P) Q;,(P)

!

“ P ((J, k,)
o tg[q(p, kf)a] dp +

O k&2 — 02

“ s, ((J) Sk (u) tg[p(o, k,)a] do.

tga,(kr ) is the eigenvalue of (6), H. is the eigenvector and

Re {Z (k,)} is a weight matrix. The eigenvector is just the

v-th component of the interface field h~v(y, kf ) in the basis

(5). For this kind of problem, the following orthogonality

relationship on the interface x = O holds (T denotes trans-

position):

(7)HT . Re {Z(kt)} “ H~ = 8UP.v

The physical interpretation of (7) is that two field distri-

butions pertaining to the same k,, but corresponding to

different indices p, v, are also orthogonal in y over the

interface at x = O, i.e. they do not exchange power at this

discontinuous interface.

In order to actually set up and solve (6) while keeping

the matrix size as low as possibe, we must effect a prudent

choice of the expansion basis for the field at the interface,

that includes all known physical features of the solution.

In fact, we use a single function, the ‘transition function’

[1], [2], a choice that makes this problem scalar. The

‘transition function’ consists of the distribution of the

component hYt of the guided mode of a slab of interme-

diate height, that maximizes the coupling integrals be-

tween the slabs to the left and to the right of the transverse

discontinuity and the intermediate slab itself. With this

choice IV = 1 in (5), and either (4) or (6) becomes the

scalar equation below:

+Z !mq(~, k,)
m=e,o () k; – p2

. [Q,i(p)]%g[q(p, k)al dp

(8)
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Although (8) is now a scalar expression, its pointwise nu-

merical evaluation is time-consuming in practice and a

simpler expression would be desirable. One such is ob-

tained by observing in (8) that the behavior of tga (k, ) is

dominated by its poles, arising from the factor tg [q. (k,) a]

in the second term. Considering the asymptotic behaviour

around these poles, one recovers a simple approximate

expression, valid for not too large a rib height t,namely,

()P- 2 e,+ q$(k,)
tga(k, ) = ~ —— tg [q, (k, ) a] . (9)

fe- kx(kf)

In order to assess the validity of this approximation, we

compute tga (kt ) for two significant cases of rib wave-

guide with nl = 3.44, nz = 3.35, h = 1.15 pm, D = 1

pm, a = 1.5 pm, d = 0.5 pm and 0.9 pm, respectively.

Outer slab thicknesses d = 0.5 pm and 0.9 ~m repre-

sent the situations of slabs guides near and beyond cutoff

respectively. The results for tga (k~) versus kf/ko pre-

dicted from equations (8) (continuous line) and (9) (dashed

line) are plotted in Fig. 2 and Fig. 3 fc~r d = 0.5 pm and

d = 0.9 pm respectively. From these figures, we notice

that the difference between the two curves is very small,

even for large steps, as long as the outer slab supports

surface modes. Moreover, in the case of Fig. 3, the two

curves can be considered coincident. However, where the

outer slab is below cutoff, approximation (9) does not hold

and (8) must be used instead, taking care of suppressing

the term P + that corresponds to a guided mode of the

outer slab, now nonpropagating.

Once the eigenvalue a (kt ) is recovered, all field com-

ponents of the continuous modes are obtainable from the

expression (2a), (2b) of the hertzian potentials.

Finally, in Appendix I is shown that for the continuum

the following orthonormality condition holds:

= tip. ti(kt – k:). (lo)

(10) implies in (2a), (2b) the following normalization coef-

ficient:

Extension to the odd case (magnetic wall in x = –a) is

obvious.

Analogous developments are appli~d to the substrate

continuous modes in terms of the independent continuous

variable at. The complete expression Of this kind of modes

are reported in Appendix II. Using a,gain the ‘transition

function’, we can obtain a simplifiec~ expression of the
tgb(at),valid for not too large ribs:

Cl 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7

Wo

Fig. 2. Values of tga(k, ) versus k,/kO predicted form (8) (continuous line)

and (9) (dashed line) for the following parameters: n, = 3.44, nz = 3.35,
X= 1.15 &m, D,= l~m, a= 1.5pm andd=0.5ym.

01 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7

WO

Fig. 3. Values of rga(k, ) versus k,/kO predicted form (8) (continuous line)

and (9) (dashed line) for the following parameters: n I = 3.44, % = 3.35,
A= 1.15 ~m, D = lpm, a = 1.5pm andd= 0.9pm.

0.5

0.3

-0.3

-0.5

0 0.2 0.4 0.6 0.8 1

@

Fig. 4. Values of tgo (o, ) versus u,/u predicted from ( 11) (continuous line)

and (A2. 3) (dashed hne) for the following parameters: n, = 3.44, rrz =
3.35, h= 1.15 pm, D= l~m, a = 1.5~mandd= 0.5pm.

As in the previous case, we can compare the behaviour

of tgb(ol ) obtained by (11) with the complete expression

reported in Appendix II (A2. 3). We have considered the

same cases of the tg~(kt), i.e.: nl = 3.44> n~ = 3.3~~ ~
. 1.15 pm, D = 1 ~m, a = 1.5 pm, d = 0.5 pm and

0.9 ~m. We notice that the complete expression (A2. 3) is

well approximated by (11), as shown in Figs. 4 and 5,

where the two curves are practically coincident.

Moreover, we notice that tgb(or ) evaluated at o~ = v is

exactly equal to the value of tga (kt ) at kf = O. Thus, we
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-03 ~
o 0.2 0.4 0.6 0.8 1

qv

Fig. 5. Values of fgb(u, ) versus u,/v predicted from (1 1) (continuous line)

and (A2.3) (dashed line) for the following parameters: n, = 3.44, n2 =
3.35, A= l,15#m, D = l~m, a = 1.5~mandd=0.9~m.

can assert that the substrate continuous modes are the

‘continuation’ of the air continuous modes.

Step Discontinuities in Rib Guide

Knowledge of the continuous spectrum is now applied

to various examples of step discontinuities.

Step discontinuities were examined in the literature [4]

but the presence of a rib guide continuum was never in-

troduced. The continuum, in fact, plays the same role as

that of higher order modes in close guide, that are excited

by a step discontinuity.

E-Plane Step

The first case under consideration is the discontinuity

in the E-plane of a LSE-polarized rib guide due to a

change of rib width occurring at z, = O, as shown in Fig.

6.

By standard techniques [13], we recover the integral

equation for the discontinuity in terms of the transverse

with

Zaz

Fig. 6. Change in rib width between two rib waveguides.

A- = ((lly, e.- (x, Y)))

A+ = ((HY, e; (x, y)))

A-(k,) = ((HY, e.- (x, y, k)))

A+(k,) = ({HY, e~(x, Y, k)))

A-(of) = ((HY, e.- (x, y, ot)))

A+(q) = ((HY, e~(x, y, o,)))

where (( )) stands for the integration over the cross-sec-

tion, e; (x, y), eX–(x, y, kt), eX-(x, y, at), eX+(x, Y), eX+(x,

Y, k,), e: (x, Y, o,), denote the x-components of the elec-
tric field of the bound modes and of the continua, to the

left and to the right of the discontinuity, respectively, and

the normalizations (10) and (A2 .4) hold.

Again, using the’ ‘transition function’ as a single term

expansion reduces the above equation (12) to a scalar one:

we take as HY the transverse distribution of the bound

mode of an ideal rib guide of width intermediate between

a 1and a2, so as to ensure maximum conservation of power

at the step discontinuity. By multiplying (12) by HY and

integrating in the transverse section, a relatively simple

expression of the reflection coefficient is obtained:

pu
~+z _ A-2 +

J
[A-2(kr) + A+z(kl)] dk, +

!
[A-2(u,) + A+2((J,)] da,

o
R=

o

(

w

(

u (13)

~-z + /4+2 +
[A-z(k,) + A+2(k,)] dk, + [A-2(0,) + A+2(u,)] da,

JO

magnetic field distribution HY at the step:

l+R

!

m

— A-eX- (x, y) – A-(kc) eX-(x, y, kt) dkt
1–R o

s

u

+ A-(at) e; (x, y, crf) dot
o

!

w

= A+e~(x, y) + A+(k, ) e: (x, y, k,) dk,
o

!

u

+ A+(or) e; (x, y, rJ,) dot (12)
o

JO

Now, the above overlapping integrals can be evaluated

analytically. The results obtained for modulus and phase
of the reflection coefficient at the step discontinuity of Fig.

6 are shown in Fig. 7, assuming the following parameter

values: nl = 3.44, nz = 3.40, A = 1.15 pm, 2a2 =

3pm, d=0.6pmand D = l.O pm.

In the same manner, we have examined the abruptly

terminated rib waveguide shown in Fig. 8. In particular,

in Fig. 8(a) just the rib is terminated, in Fig. 8(b) the

guide and the surrounding slab are terminated and, fi-

nally, in Fig. 8(c) the whole guide is terminated. Corre-

spondingly, the region z > 0 is represented by the spec-

trum of an asymmetrical slab waveguide of thickness d

for the case of Fig. 8(a), by the spectrum of an air-sub-
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Phaw(R)
[tip]
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45
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15

0

0..5 0.6 0.7 0.8 0,9 1

a,l~

Fig. 7. Modulus and phase of the reflection coetlicient versus WI/ Wj for

the case of Fig. 6 with the following parameters: c, = 3.44, q = 3.40,
k= 1.15 pm,2a2= 3pm, d=0.6pmand D = l.O pm.

EiizL
a

,. ~;:

Y . ......
,,..,

.+. .
,..’.. . . *

0 .:.,.. .
. .

,.
D

d “1

—

t “T
,,..:,,.:.:,.,.,.

28 .,, ,, .,,.. ... . . . . .
.,Y .,.”1,::....... ...,. ... .. ..

,., D,.,
,.:. z

d“
(a) (b)

(c)

Fig. 8. Abruptly terminated rib waveguide: (a) just the rib is terminated;
(b) the rib and supporting slab are terminated; (c) the whole guide is ter-
minated.

strate space for the case of Fig. 8(b) and by the spectrum

of the air space in case of Fig. 8(c). Nclw, for case of Fig,

8(a) we use as ‘transition function’ the bound mode of a

rib waveguide whose height ~ is intla-mediate between

those of the guide ‘D’ and the slab ‘d’ to the left and to

the right of the step respectively. Again ~ is chosen so as

to ensure maximum conservation of power.

In the case where no guidance is present in region z >

0, i.e. for cases of Fig. 8(b) and 8(c), the above criterion

breaks down. For these cases, we choose as ‘transition

function’ the bound mode of the rib waveguide whose

height is the same as the height of the ‘transition slab’, as

defined in the previous section.

Although this choice is somewhat ;arbitrary, its use is

justified by the insensivity of the results to slight vari-

ations of the variational trial function.

The reflection coefficients for the cases of Fig. 8 are
shown in Fig. 9. In the case of Fig. $)(a) where only the

rib is terminated at z = O, the reflection coefficient de-

creases as d increases. This is to be expected, since, as d

increases, the rib waveguide approaches the asymmetrical

slab guide at z a O and most of the incident wave from

the rib guide will transmit through to the asymmetrical
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Fig. 9. Modulus and phase of the reflection coefficients versus outer slab

thickness ~ for the corresponding cases of Fig. 8.

slab guide for z > 0. As the confinement increases, i.e.,

d decreases, the reflection coefficient of configuration of

Fig. 8(a) approaches that of Fig. 8(b). This is so because,

as d decreases, the slab at z > 0 will not support surface

waves and there is no guiding.
The reflection coefficient of the configuration of Fig,

8(c) where the guide is terminated by the air half space is

slightly higher than those of Fig. 8(b) or Fig. 8(a) with a
slab below cutoff. This suggests that some of incident ~

wave leaks through the substrate. However, the difference

in the reflection coefficients of the two different termina-

tions is not large.

Finally, the forward and backscattered radiation pat-

terns of the far field for the configuration of Fig. 8(c),

calculated by means of saddle point integration, are shown
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Fig. 10. Forward and backscattered radiation patterns of the far field for
the configuration of Fig. 8(c): (a) @-plane and (b) Y-plane for forward
radiation; (c) @-plane and (d) Y-plane for backward radiation.

in Fig. 10, where the curves with negligible value have

not been reported, for the sake of simplicity.

Fig. 10(a)-(b) show the forward radiation pattern in the

azimuthal and transverse directions (see Fig. 8(c)). We

notice a narrow lobe in @ as well as in V, at about @ =

0°, 9 = 00. Fig. 10(c)-(d) show the backward radiation

pattern. In the ~-plane we notice that the maximum ra-

diation occurs at about @ = 160°, V = 20°. Obviously,

this radiation is symmetrical with respect to the plane @

= ‘n-.

In the V-plane, the maximum is at about ~ = 250, IZ

= 160°. In- the latter radiation pattern, the air region is

represented by 00 < * s 900, the substrate region is

represented by 270° s Y s 360°, Note, however, that

the radiation patterns are normalized to its maximum value

and the backscattered radiation in this problem is about
three order of magnitude less than the forward radiation.

We note the presence of backscattered radiation over a

wide range of angles, not unlike the case of a step dis-

continuity in slab guide [13].

This last result would be particularly difficult to obtain

without a knowledge of the rib guide radiation modes.

CONCLUSION

We have derived the continuous spectrum of the rib

waveguide by a method that ensures orthonormality and

completeness of the spectrum. We obtain a relatively sim-

ple approximation of this continuum for most cases of

—Ok130°

—@=140”

—4=150”

+*160”

—0=170”

common interest. Finally, we used the complete spectrum

of the rib waveguide to examine various cases of step dis-

continuities, including, for the first time, radiative ef-

fects.

APPENDIX I

Setting A(p) = k; – P2, A(a) = k&2 – O* and drop-

ping the kf-dependence when not necessary, integral (10)

can be divided into two parts: one for the inner region (11)

and one for the outer region (12).

We have
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Ifkr s k~:

coca

1~ =
1!

EXV(X, y, k,) HYP(x, Y> k;) ~ dy
o —cc

!‘P
+— S;S~ do

O kt A(a)

–kXtgcxv + k; tga:
122 = P:P;

kte.b

— ~~ ~ j“ qtg% - k~tgcx;

A(p)
Q&Q;m dp

o

—
&,O ~VT - k:tgcx,A(p)

‘ Qj,,Q:~ dp
k,

—

m~,~ i!; ~ QTmQjwIdp

!

“ ptglxv – p’tgaj S+s+ do.
—

o A(o) p “

Taking into account that q$ – q~2 = Iqz – q‘2 = P 2 –

P ‘2 = k2 – k~2, and expanding hYVas in (5), by the defi-

nition (~) of tga.(k~ ), thesum of Z1 and of the second te~

of 12 gives zero. Thus, by (7), the remaining term yields

~!
EV(X, y, k,) x llA(x, y, k:) “ z d~i

s

= 6(k, – k/)Ht Re {Z(k,)}Hp ‘= Nk, – k;) ~.y.

p; =

Q;(P) =

s;(u) =

*m

APPENDIX II

The complete expression valid for substrate continuous

modes is

II;(X, y, u,) = -= 4,(Y)
cos [k, (at) (x + a)]

k;Ee- cos [k, (uf ) a]

. ch[k(p, o,)(x + a)]
dp

ch[k(p, IJr)a]

!

“’ s;(o)
+

() k&2 – u
z dsb (~, Y)

. cos [$ (0, at) (x + a)] da

cos [~ (u, at) a]

. ch [t (o, at) (x + a)] do

ch [$ (0, Ut) a]

Cos [~ (IJ, of )x + C3,(ut)] do

Cos (3”(0, )

X>o (A2.2)

where

k(P2 ~t) = @ – 0; + ZJ2

! hy.(y> u,) <~s(y) @ = (hyiiy, o,), @s(Y)) P; = (hY.(y, or), ~,(y))
—m

(hYU(y, (J,), @,,,(p, y)) Q;.(P) = (hY.(y, ~,), ~m(P, Y))

(hY,(y, a,), o,~ (o, y)) S~(@ = (hY”(y, 0,), ~,b(~, Y)).
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With analogous development to that of the air continuous

modes, introducing the ‘transition function’, we obtain:

tga”(tJ, )

[

* [P ‘]2 +

k,(~,)—– — [P ‘] ’tg[k,
k&-

!a’ $(0, (J,)
‘ S+(CT)]2dc

O k:e2 – rJ 1

mk(p, Or)
—

m% j, k; _ ~z [Q~(P)12 dp

m k(p, a,)—
~~,o JO kg _ ~z [Q~(P)12tgk[k(p, ot)a] dp

!

o f(rJ, (7,)—
n, k;e2 – o’

[S ‘(o)]’ da

!

‘“ ~(o, tJ,)
+ [S ‘(a)]’tg [$(o, a,) a] do

O k~e2 – U2

!

v f(tJ, a,)—
., k&2 – u

‘ [S ‘(o)]’tgh [~(a, tJt) a] do.

(A2.3)

Moreover, the following orthogonality relationships hold:

H
s

(A2.4)

J%(A Y> k) x ~p(x, y, q) - z ds

—
- ~!

&(X, y, at) X ~~(,x, Y, k,) “ 2 ds = O

s

(A2.4)

introduces in (A2. 1), (A2 .2) the following nor-

malization coefficient:

r

2ot

7rc@(tJ,)
Cos &,(cTt). (A2.5)
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